竺晓程

副教授

所在系所:航空动力研究所

办公电话:021-34207714

电子邮件:zhxc@sjtu.edu.cn

通讯地址:上海交大350vip8888新葡的京集团A楼517室

个人主页:无

个人简介
教学工作
科研工作
荣誉奖励

教育背景

2000.02-2003.05350vip8888新葡的京集团博士
1997.09-2000.02上海理工大学硕士
1992.09-1996.07华东工业大学学士

工作经历

2003.05- 350vip8888新葡的京集团 350vip8888新葡的京集团 工程热物理研究所 讲师/副教授
2011.02-2012.02 UCDavis Mepartment of aerospace 访问学者

研究方向

叶轮机械内部流动
非稳定流动
风能利用

学术兼职

中国动力工程学会透平专委会副主任委员
中国电工技术学会新能源发电设备专委会委员
中国动力工程学会新能源设备专委会委员

PO334 风能利用原理与技术 本科生 48 3
ME204 传热学 本科生 48 3
AV005 模型飞机的设计和分析 16 1

科研项目

两机科学中心项目,高效***,2022-2024,课题负责人
两机项目,低噪声**8,2022-2025,课题负责人
重点研发计划, 700℃等级高效超超临界发电技术(课题4中的子课题1), 2018-2021, 子课题主持
横向, 汽轮机灵活性改造低压缸低负荷工况安全性研究, 2018-2021, 主持
横向, 超超临界汽轮机中压缸内部主要腔体的流动和换热问题研究, 2014-2017, 主持
横向,超超临界汽轮机中压缸内部主要腔体的流动和换热问题研究, 2014-2016, 主持其他, AXXX, 离心压气机****数值研究, 2013-2014, 主持,
横向, 低压末三级通流特性分析及动叶强度振动研究, 2014-2015, 主持,
国防**重点,离心/组合。。。。。,2015-2018,参与

代表性论文专著

[1] Shi L, Zhu X, Du Z. Study on convective heat transfer characteristics of inclined jet impinging cylindrical target surface in the confined space [J]. Applied Thermal Engineering, 2023, 218: 119316.
[2] Shi L, Zhu X, Du Z. Study on flow structure and heat transfer mechanism of inclined jet impinging on the rotating cylindrical target surface in the confined space [J]. International Journal of Heat and Mass Transfer, 2023, 216: 124544.
[3] Lian B, Tong X, Zhu X, Du Z, Cui Y, Khoo B C. Investigations on the effects of structural damping on vortex-induced vibration response of an airfoil at a high angle of attack via the aero-damping map[J]. Physics of Fluids, 2023, 35(6): 064107.
[4] Lian B, Tong X, Zhu X, Du Z, Cui Y, Khoo B C. Investigations on lock-in vortex-induced vibration of an airfoil at a high angle of attack based on detached eddy simulation [J]. Physics of Fluids, 2023, 35(9): 094105.
[5] Tian T, Sun C, Zhu X, Du Z. Flow modal decomposition of a vertical-axis wind turbine with the moving boundaries of rotating blades[J]. Journal of Engineering for Gas Turbines and Power, 2022, 144(1): 111003.
[6] Shi L, Sun C, Zhu X, Du Z. A confined laminar slot impinging jet at low Reynolds numbers: unsteady flow and heat transfer characteristics [J]. Journal of Thermal Science, 2023, 32(2): 753-769.
[7] Shi L, Zhu X, Du Z. Experimental investigation on convective heat transfer of inclined jets impinging on the rotating cylindrical surface in the confined space [J]. International Journal of Heat and Mass Transfer, 2022, 202: 123744.
[8] Lian B, Zhu X, Du Z. Numerical study on vortex-induced vibration of wind turbine airfoil at high angle of attack via free vibration simulation[J]. Journal of Renewable and Sustainable Energy, 2022, 14(3): 033306.
[9] Sun C, Tian T, Zhu X, Ouyang H, Du Z. Investigation of the near wake of a horizontal-axis wind turbine model by dynamic mode decomposition [J]. Energy, 2021, 227: 120418.
[10] Zhu X, Sun C, Ouyang H, Du Z. Numerical investigation of the effect of towers and nacelles on the near wake of a horizontal-axis wind turbine model [J]. Energy, 2021: 121782.
[11] Hu P, Lin T, Yang R, Zhu X, Du Z. Numerical investigation on flow instabilities in low-pressure steam turbine last stage under different low-load conditions[J]. Proceedings of the Institution of Mechanical Engineers. Part A: J. Power and Energy, 2021, 235(6):1544-1526.
[12] Hu P, Sun C, Zhu X, Du Z. Investigations on vortex-induced vibration of a wind turbine airfoil at a high angle of attack via modal analysis[J]. Journal of Renewable and Sustainable Energy, 2021, 13(3):033306.
[13] Zhu X, Hu P, Lin T, Du Z. Numerical investigations on non-synchronous vibration and frequency lock-in of low-pressure steam turbine last stage[J]. Proceedings of the Institution of Mechanical Engineers. Part A: J. Power and Energy, 2021, 236(4): 647-661.
[14] Sun C, Tian T, Zhu X, Du Z. Sparse identification of nonlinear unsteady aerodynamics of the oscillating airfoil [J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(7): 809-824.
[15] Sun C, Tian T, Zhu X, Du Z. Input-output reduced-order modeling of unsteady flow over an airfoil at a high angle of attack based on dynamic mode decomposition with control [J]. International Journal of Heat and Fluid Flow, 2020, 86(5):108727.
[16] Shi L, Sun C, Zhou D, Zhu X, Du Z. Numerical study of unsteady flow and heat transfer of circular tangential direction jets flowing over the inner cylinder surface in the annular chamber [J]. International Journal of Heat and Fluid Flow, 2020, 85(7): 108648.
[17] 田甜,孙翀,竺晓程,杜朝辉.垂直轴风力机尾迹的时空特性[J].动力工程学报,2023,43(03):341-348+371.
[18] 连波,胡平,竺晓程,杜朝辉.大攻角翼型的锁频现象及气弹稳定性研究[J].工程热物理学报,2023,44(03):668-676.
[19] 孙翀,田甜,竺晓程,杜朝辉.风力机翼型非定常流场POD和EPOD分析[J].350vip8888新葡的京集团学报,2022,56(01):45-52.
[20] 朱能杰,竺晓程,沈昕,杜朝辉.透平叶栅非轴对称端壁优化目标比较[J].热能动力工程,2022,37(01):41-48.
[21] 何磊,陈大为,张祎,王海峰,刘钊,竺晓程,杜朝辉.透平静叶表面多排孔气膜冷却特性试验研究[J].动力工程学报,2021,41(12):1040-1044+1068.
[22] 孙翀,田甜,竺晓程,欧阳华,杜朝辉.基于大涡模拟下风力机翼型非定常转捩流动的动态模态分解分析[J].工程热物理学报,2021,42(12):3156-3163.
[23] 朱能杰,张方,竺晓程,沈昕,杜朝辉.高压透平动叶非轴对称端壁优化设计[J].热力透平,2021,50(04):270-275.
[24] 何磊,李月茹,竺晓程,杜朝辉.基于流热耦合的燃气轮机透平叶顶冷却设计[J].热能动力工程,2021,36(10):27-32.
[25] 张赫辉,薛翔,竺晓程,杜朝辉.基于本征正交分解的无叶扩压器流动稳定性Galerkin降阶模型[J].热能动力工程,2021,36(08):16-21.
[26] 孙翀,石磊,沈昕,竺晓程,杜朝辉.风力机翼型在失速工况下非定常流场的本征正交分解分析[J].工程热物理学报,2021,42(04):894-904.
[27] 石磊,周代伟,竺晓程,杜朝辉.基于流热耦合方法的中压腔涡流冷却效果数值研究[J].热能动力工程,2021,36(01):24-32.
[28] 吴蔚,赵博,薛翔,竺晓程,王彤,杜朝辉.离心压气机不稳定流动的时频特征分析[J].航空动力学报,2020,35(08):1768-1776.

软件版权登记及专利

[1] 陈进格,沈昕,竺晓程,杜朝辉, 一种基于气弹模型的风力机叶片预弯预扭设计方法, CN 109902384 B, 发明专利, 2023.6授权
[2]景潇,殷承良,马邦彦,张赫辉,竺晓程,用于无叶扩压器壁面的类鲨鱼皮二维锯齿状沟槽结构, 发明专利, 2023.12授权
[3]赵奕博,景潇,马邦彦,竺晓程,压气机气动声学一体化优化设计软件,2023.7授权
杨晓建,竺晓程,沈昕,胡晨星,孙翀,杜朝辉. 凹槽阻流结构[P]. 上海:CN107061356A,2017-08-18.
[4] 王广,沈昕,陈进格,竺晓程,杜朝辉. 利用分形维数测量风场地表粗糙度的方法[P]. 上海:CN106909707A,2017-06-30.
[5] 杨晓建,竺晓程,沈昕,胡晨星,孙翀,杜朝辉. 锯齿阻流结构[P]. 上海:CN106837858A,2017-06-13.
[6] 杨晓建,竺晓程,沈昕,胡晨星,孙翀,杜朝辉. 带有环形突起结构的新型离心压气机[P]. 上海:CN106640754A,2017-05-10.
[7] 刘亮亮,竺晓程,刘昊,沈昕,杜朝辉. 受限空间内有横流的射流冲击控制结构[P]. 上海:CN106014487A,2016-10-12.