王宇晗
研究员所在系所:制造技术与装备自动化研究所
办公电话:021-34206800
电子邮件:yhwang@sjtu.edu.cn
通讯地址:闵行区东川路800号机动A楼702
个人主页:me.sjtu.edu.cn/teacher_a.asp?lanmu=shizi&name=教师名录&id=123
教育背景
1998―2005 350vip8888新葡的京集团 机械制造专业 博士
1989―1992 南京航空航天大学 机械制造专业 硕士
1982―1986 华东冶金学院 学士
工作经历
1986―1989 马鞍山钢铁公司机械制造厂 助工
1992―1998 马钢股份有限公司车轮轮毂厂 工程师
1998―2008 350vip8888新葡的京集团 副教授
2008―至今 350vip8888新葡的京集团 研究员
研究方向
智能感知部件的设计、诊断与优化
机电装备动力学建模与虚拟仿真技术
复杂曲面数控加工技术与数控装备
实验室正招收学生,24年、25年研究生名额开放申请中,欢迎感兴趣的同学咨询!
学术兼职
中国机械动力学学会副理事长
全国机床数控系统标准化技术委员会委员
课程名称:现代数控技术
授课对象:硕士生
学时数: 36
学分:2.0
科研项目
2022—2024,国防173项目, ×××五轴高效镜像铣削加工,子课题负责人
2022—2023,上海市经信委首台套项目,用于飞机钛合金结构件加工的大型卧式五轴铣生产线,负责人
2017—2019,工信部民机专项,民用飞机蒙皮薄壁板类零件镜像铣削工艺与装备技术研究,负责人
2017—2019,上海市经信委工业强基,12米级大型飞机蒙皮卧式双五轴镜像铣削工艺与装备,负责人
2016—2018,上海经信委首台套项目,2m级运载火箭箭体精确、高效、绿色制造生产线,负责人
2014—2017,上海市科委科研计划项目,航天大型结构件的核心智能制造成套装备研发及产业化,负责人
2013—2016,国家高档数控及基础制造技术重大专项,运载火箭箭体结构制造关键成套装备与工艺,子课题负责人
2013—2015,上海市科技发展基金重大项目,涡轮增压器整体叶轮的五轴高效加工成套装备与技术,负责人
2009—2012,国家高档数控及基础制造技术重大专项,高性能复杂薄壁类零件多轴联动加工技术,子课题负责人
2011—2013,国家“863”重大项目,云制造服务平台关键技术及应用,子课题负责人
2009—2011,国家自然科学基金项目,线接触切削原理的五轴联动高效曲面加工方法,负责人
2006—2008,国家自然科学基金项目,非光顺表面的随机分形建模及加工规划,负责人
2009—2010,国家“863”重点项目,涡轴发动机整体叶轮高性能加工技术与仿真优化,负责人
2002—2004,国家“863”重大专项,中档数控系统产业化支撑技术,负责人
2009—2011,国家高档数控及基础制造技术重大专项,全数字可重构高档数控系统研制,子课题负责人
2009—2011,航天基金项目,重载搅拌摩擦焊设备结构优化与关键部件研究,负责人
2007—2012,主持广州数控-上海交大数控技术联合研究中心项目,高档数控系统研发,研发经费1000万元,负责人
1999—2001,上海市科技基金国际合作项目,基于OSACA平台的高性能控制器产品的开发,负责人
2002—2004,上海市科学技术发展基金重点项目,开放式数控软件平台及应用系统开发,负责人
2004—2006,上海市科学技术发展基金重点项目,开放式结构的低成本嵌入式数控系统,负责人
2008—2009,上海市重大技术装备研制专项,大型五轴联动船模加工机床的研制,负责人
2007—2008,上海市重大技术装备研制专项,大型龙门式五轴联动加工中心的研制,负责人
2006—2007,上海市重大技术装备研制专项,五轴联动高档数控系统及五轴加工中心研制,负责人
2006—2007,企业横向,汽轮机叶片的五轴联动数控系统及加工工艺研究,负责人
代表性论文专著
1. Hu, Y., Wang, Y., Zhao, S., Ji, Y. Effect of tool–workpiece interface temperature control on the weld quality of a bobbin-tool friction-stir-welded aluminum alloy.(2023) International Journal of Advanced Manufacturing Technology, 128 (9-10), pp. 4379-4396.
2. Fan, Y., Huang, J., Zhang, Y., Huang, N., Bi, Q., Wang, Y. Improvement in hole-pose error for aerospace drilling applications based on Hermite surface reconstruction and manifold error similarity. (2023) Precision Engineering, 81, pp. 22-35.
3. Zhang, S., Ji, Y., Huang, N., Mou, W., Bi, Q., Wang, Y. Integrated profile and thickness error compensation for curved part based on on-machine measurement. (2023) Robotics and Computer-Integrated Manufacturing, 79.
4. Fan, Y., Zhang, Y., Jie, H., Yue, T., Bi, Q., Wang, Y. Calibration for a robotic drilling system with secondary encoders based on a novel enhanced rigid-flexible coupling model.(2022) Industrial Robot, 49 (6), pp. 1101-1115.
5. Tang, Y., Zhang, Y., Fan, Y., Wang, Y., Feng, X. An On-Line Path Correction Method Based on 2D Laser Profile Measurement for Gluing Robot. (2022) SAE Technical Papers.
6. Ji, Y., Dong, H., Yu, L., Ren, F., Bi, Q., Wang, Y. Determining rotating tool-tip FRFs by measuring holder-point FRFs based on a robust frequency-based substructure method. (2022) Mechanical Systems and Signal Processing, 164.
7. Ji, Y., Chen, Y., Zhang, S., Bi, Q., Wang, Y. Multi-Point Substructure Coupling Method to Compensate Multi-Accelerometer Masses in Measuring Rotation-Related Frequency Response Functions. (2022) Journal of Manufacturing Science and Engineering, Transactions of the ASME, 144 (1).
8. Ji, Y., Bi, Q., Yu, L., Ren, F., Wang, Y. A robust RCSA-based method for the in situ measurement of rotating tool-tip frequency response functions. (2020) Journal of Manufacturing Science and Engineering, Transactions of the ASME, 142 (8).
9. Zhang, S., Duan, X., Zeng, C., Shi, K., Zhang, X., Bi, Q., Wang, Y. Pose Calibration for 2D Laser Profiler Integrated in Five-Axis Machine Tools. (2020) IOP Conference Series: Materials Science and Engineering, 831 (1).
10. Zhong, L., Ren, F., Guo, L., Bi, Q., Wang, Y. Kinematics Test and Evaluation of Tool Axis Direction Error for Five-axis Machine Tools. (2020) IOP Conference Series: Materials Science and Engineering, 831 (1).
11. Zhong, L., Yu, J., Bi, Q., Wang, Y. A dynamic two-axis interpolation test with linear and rotary axes in five-axis machine tool. (2020) International Journal of Advanced Manufacturing Technology, 106 (1-2), pp. 91-104.
12. Jin, Y., Zhao, S., Wang, Y. An Optimal Feed Interpolator Based on G2 Continuous Bézier Curves for High-Speed Machining of Linear Tool Path. (2019) Chinese Journal of Mechanical Engineering (English Edition), 32 (1).
13. Huang, J., Yu, L., Zhang, Y., Wang, Y. A New Positioning Device Designed for Aircraft Automated Alignment System. (2019) SAE Technical Papers.
14. Zhang, S., Bi, Q., Ji, Y., Wang, Y. Real-time thickness compensation in mirror milling based on modified Smith predictor and disturbance observer. (2019) International Journal of Machine Tools and Manufacture, 144.
15. Yu, L., Bi, Q., Ji, Y., Fan, Y., Huang, N., Wang, Y. Vision based in-process inspection for countersink in automated drilling and riveting. (2019) Precision Engineering, 58, pp. 35-46.
16. Fan, Y., Yu, L., Zhang, Y., Bi, Q., Wang, Y. A High Reliable Automated Percussive Riveting System for Aircraft Assembly. (2019) SAE Technical Papers.
17. Bi, Q., Huang, N., Zhang, S., Shuai, C., Wang, Y. Adaptive machining for curved contour on deformed large skin based on on-machine measurement and isometric mapping. (2019) International Journal of Machine Tools and Manufacture, 136, pp. 34-44.
18. Zhao, S., Ni, J., Wang, G., Wang, Y., Bi, Q., Zhao, Y., Liu, X. Effects of tool geometry on friction stir welding of AA6061 to TRIP steel. (2018) Journal of Materials Processing Technology, 261, pp. 39-49.
19. Ji, Y., Bi, Q., Zhang, S., Wang, Y. A new receptance coupling substructure analysis methodology to predict tool tip dynamics. (2018) International Journal of Machine Tools and Manufacture, 126, pp. 18-26.
20. Zhong, L., Bi, Q., Huang, N., Wang, Y. Dynamic accuracy evaluation for five-axis machine tools using S trajectory deviation based on R-test measurement. (2018) International Journal of Machine Tools and Manufacture, 125, pp. 20-33.
21. Zhang, Y., Bi, Q., Yu, L., Wang, Y. Online compensation of force-induced deformation for high-precision riveting machine based on force–displacement data analysis. (2018) International Journal of Advanced Manufacturing Technology, 94 (1-4), pp. 941-956.
22. Yu, L., Zhong, L., Wang, Y.H. Shape optimization of generic rotary tool for five-axis flank milling. (2017) International Journal of Advanced Manufacturing Technology, 93 (5-8), pp. 2921-2931.
23. Zhong, L., Bi, Q., Wang, Y. Volumetric accuracy evaluation for five-axis machine tools by modeling spherical deviation based on double ball-bar kinematic test. (2017) International Journal of Machine Tools and Manufacture, 122, pp. 106-119.
24. Yu, L., Zhong, L., Wang, Y. Optimizing tool size and tool path of five-axis flank milling with bounded constraints via normal mapping. (2017) Advances in Mechanical Engineering, 9 (10).
25. Yu, L., Zhang, Y., Bi, Q., Wang, Y. Research on surface normal measurement and adjustment in aircraft assembly. (2017) Precision Engineering, 50, pp. 482-493.
26. Zhao, S., Bi, Q., Wang, Y., Shi, J. Empirical modeling for the effects of welding factors on tensile properties of bobbin tool friction stir-welded 2219-T87 aluminum alloy. (2017) International Journal of Advanced Manufacturing Technology, 90 (1-4), pp. 1105-1118.
27. Zhang, Y., Bi, Q., Yu, L., Wang, Y. Online adaptive measurement and adjustment for flexible part during high precision drilling process. (2017) International Journal of Advanced Manufacturing Technology, 89 (9-12), pp. 3579-3599.
28. Zhang, Y., Bi, Q., Huang, N., Yu, L., Wang, Y. On-Line Non-Destructive Measurement for Interference-Fit Riveting Based on Force-Deformation Data Analysis. (2017) SAE Technical Papers.
29. Yu, L., Bi Phd, Q., Zhang, Y., Wang, Y. A Novel Normal Measurement Method for Robotic Drilling and Countersinking. (2017) SAE Technical Papers.
30. Zhao, S., Bi, Q., Wang, Y. An axial force controller with delay compensation for the friction stir welding process. (2016) International Journal of Advanced Manufacturing Technology, 85 (9-12), pp. 2623-2638.
31. Huang, N., Zhang, S., Bi, Q., Wang, Y. Identification of geometric errors of rotary axes on 5-axis machine tools by on-machine measurement. (2016) International Journal of Advanced Manufacturing Technology, 84 (1-4), pp. 505-512.
32. Shi, J., Bi, Q., Wang, Y. Five-axis interpolation of continuous short linear trajectories for 3[PP]S-XY hybrid mechanism by dual Bezier blending. (2016) Journal of Shanghai Jiaotong University (Science), 21 (1), pp. 90-102.
33. Jin, Y., Bi, Q., Wang, Y. Dual-Bézier path smoothing and interpolation for five-axis linear tool path in workpiece coordinate system. (2015) Advances in Mechanical Engineering, 7 (7), pp. 1-14.
34. Huang, N., Jin, Y., Bi, Q., Wang, Y. Integrated post-processor for 5-axis machine tools with geometric errors compensation. (2015) International Journal of Machine Tools and Manufacture, 94, pp. 65-73.
35. Sun, C., Bi, Q., Wang, Y., Huang, N. Improving cutter life and cutting efficiency of five-axis plunge milling by simulation and tool path regeneration. (2015) International Journal of Advanced Manufacturing Technology, 77 (5-8), pp. 965-972.
36. Sun, C., Wang, Y.H., Huang, N.D. A new plunge milling tool path generation method for radial depth control using medial axis transform. (2015) International Journal of Advanced Manufacturing Technology, 76 (9-12), pp. 1575-1582.
37. Huang, N., Bi, Q., Wang, Y. Identification of two different geometric error definitions for the rotary axis of the 5-axis machine tools. (2015) International Journal of Machine Tools and Manufacture, 91, pp. 109-114.
38. Bi, Q., Shi, J., Wang, Y., Zhu, L., Ding, H. Analytical curvature-continuous dual-Bézier corner transition for five-axis linear tool path. (2015) International Journal of Machine Tools and Manufacture, 91, pp. 96-108.
39. Bi, Q., Huang, N., Sun, C., Wang, Y., Zhu, L., Ding, H. Identification and compensation of geometric errors of rotary axes on five-axis machine by on-machine measurement. (2015) International Journal of Machine Tools and Manufacture, 89, pp. 182-191.
40. Shi, J., Bi, Q., Zhu, L., Wang, Y. Corner rounding of linear five-axis tool path by dual PH curves blending. (2015) International Journal of Machine Tools and Manufacture, 88, pp. 223-236.
41. Lin, J.-T., Bi, Q.-Z., Wang, Y.-H., Sun, C. Spiral tool path generation for pocket machining. (2014) Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 48 (8), pp. 1200-1204 and 1212.
42. Shi, J., Bi, Q.Z., Wang, Y.H., Liu, G. Development of real-time look-ahead methodology based on quintic PH curve with G2 continuity for high-speed machining. (2014) Applied Mechanics and Materials, 464, pp. 258-264.
43. Zhao, S., Bi, Q.-Z., Wang, Y.-H., Shi, J., Liu, G. A data compression algorithm based on G2 continuous Bézier curves for tool paths. (2014) Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 48 (5), pp. 629-635.
44. Huang, N., Bi, Q., Wang, Y., Sun, C. 5-Axis adaptive flank milling of flexible thin-walled parts based on the on-machine measurement. (2014) International Journal of Machine Tools and Manufacture, 84, pp. 1-8.
45. Zhang, L.-Q., Zhang, S.-J., Wang, Y.-H. Double NURBS five-axis tool path planning with equal distance based on dual quaternion. (2014) Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 20 (1), pp. 128-133.
46. Yu, L., Wang, Y., Jin, Y. Envelope surface formed by cutting edge under runout error in five-axis flank milling. (2013) International Journal of Advanced Manufacturing Technology, 69 (1-4), pp. 543-553.
47. Shi, J., Wang, Y., Zhang, G., Ding, H. Optimal design of 3-DOF PKM module for friction stir welding. (2013) International Journal of Advanced Manufacturing Technology, 66 (9-12), pp. 1879-1889.
48. Bi, Q.Z., Jin, Y.Q., Wang, Y.H., Zhu, L.M., Ding, H. An analytical curvature-continuous Bézier transition algorithm for high-speed machining of a linear tool path. (2012) International Journal of Machine Tools and Manufacture, 57, pp. 55-65.
49. Zhang, L., Wang, K., Wang, Y. Kinematical optimum method for five-axis flank milling complex surfaces. (2011) Zhongguo Jixie Gongcheng/China Mechanical Engineering, 22 (21), pp. 2588-2593.
50. Zhang, L.-Q., Wang, Y.-H. Analysis and motion planning for multi-axis machining process based on hierarchical model. (2011) Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 45 (11), pp. 1715-1719.
51. Zhong, L., Bi, Q., Wang, Y., Ding, H. Five-axis flank milling method of plane double enveloping hourglass worm. (2011) Advanced Materials Research, 314-316, pp. 1523-1532.
52. Jin, Y.Q., Wang, Y.H., Yang, J.G. Real-time B-spline interpolator with look-ahead scheme for high-speed CNC machine tools. (2011) Key Engineering Materials, 455, pp. 599-605.
53. Bi, Q.Z., Wang, Y.H., Zhu, L.M., Ding, H. Generating collision-free tool orientations for 5-axis NC machining with a short ball-end cutter. (2010) International Journal of Production Research, 48 (24), pp. 7337-7356.
54. Jin, Y., Wang, Y., Feng, J., Yang, J. Research on consecutive micro-line interpolation algorithm with local cubic B-spline fitting for high speed machining. (2010) 2010 IEEE International Conference on Mechatronics and Automation, ICMA 2010, pp. 1675-1680.
55. Feng, J., Li, Y., Wang, Y., Chen, M. Design of a real-time adaptive NURBS interpolator with axis acceleration limit. (2010) International Journal of Advanced Manufacturing Technology, 48 (1-4), pp. 227-241.
56. Bi, Q., Zhu, L., Wang, Y., Ding, H. Analytical envelope surface representation of a conical cutter undergoing rational motion. (2010) International Journal of Advanced Manufacturing Technology, 47 (5-8), pp. 719-730.
57. Bi, Q.Z., Wang, Y.H., Zhu, L.M., Ding, H. Wholly smoothing cutter orientations for five-axis NC machining based on cutter contact point mesh. (2010) Science China Technological Sciences, 53 (5), pp. 1294-1303.
58. 张立强, 王宇晗, 陈明, 王劲森。 五轴加工中进给速度的多约束自适应控制策略。350vip8888新葡的京集团学报,2009.01,43(1):38-41。(20091011946772)
59. Jingchun Feng, Yuhao Li, Yuhan Wang, Ming Chen. Research on five-axis interpolation algorithm for smooth speed of the tool tip. Journal of Shanghai Jiaotong University
60. Y.H.Li, J.C.Feng, Y.Li and Y.H.Wang. Stochastic Fractal Modeling and Process Planning for Machining using Two-Dimensional Iterated Function System, Key Engineering Materials Vols. 392-394 (2009) pp 575-579
61. Jingchun Feng, Yuhao Li, Yuhan Wang, Ming Chen. Real-time NURBS Interpolator with an Optimal Feed for High-speed Machining. Advanced Materials Research, Vol. 69-70(2009.05), pp. 461-465.
62. Liqiang Zhang,Jingchun Feng, Yuhan Wang ,Ming Chen. Feedrate scheduling strategy for free-form surface machining through an integrated geometric and mechanistic model. International Journal Advanced Manufacture Technology, (2008.03) 40:1191–1201. IDS 号: 409MC.
63. Jingchun Feng, Yuhao Li, Yuhan Wang, Ming Chen. Design of a real-time adaptive NURBS interpolator with axis acceleration limit. International Journal Advanced Manufacture Technology, 2009.08.
64. Qing-Zhen Bi, Yu-Han Wang, Han Ding. A GPU-based algorithm for generating collision-free and orientation-smooth five-axis finishing tool paths of a ball-end cutter. International Journal of Production Research, 2009.09.vols:1,pp:1-20.
65. QingZhen Bi, LiMin Zhu, YuHan Wang, Han Ding. Analytical envelope surface representation of a conical cutter undergoing rational motion. International Journal Advanced Manufacture Technology, 2009.08. [16].
66. 王宇晗,吴祖育,陆志强,李宇昊.开放式控制器对数控机床低成本改造的策略[J].机械设计与研究,2000,(1). EI:00045145924
67. Chi, Yong-Lin,^Wang Yu-Han,etc. “Linux-based platform for open architecture controller and its modular developing method” Journal of Dong Hua University (English Edition) v 20 n 2 June 2003. p 107-111,EIP04138090421
68. Wang yuhan, J.C.Feng, etc.“An Optimal Feed Interpolation Algorithm For High-speed Five-axis Machining”
69. 王宇晗、钟胜波等“电动造波机控制系统的研究”,交通大学学报,2005.1,vol.40,EI:05139014283
70. Wang yuhan, LI Ru-Qiong, etc. “Tool-Path Planning for Free-form Surface High-Speed High-Resolution Machining Using Torus Cutter” Journal of Haerbing University (English Edition) v 20 n 2 May 2006
71. 王宇晗、刘康、杨汝清等“三坐标数控加工的NURBS适应性速度进给研究”,交通大学学报,350vip8888新葡的京集团学报vol.39 sup. Aug. 2005. p 163-168
72. 王宇晗、肖凌剑等,“小线段高速加工速度衔接数学模型研究”,交通大学学报,2004.10,vol.37,EIP04378355344
73. Wang yuhan, Hujun, etc. “Study on a Reconfigurable Model of Open CNC kernel”, Journal of Materials Processing Technology, (2003,July),SCI: 717HE, EI: 03287537978.
软件版权登记及专利
1. 具有W轴的直驱式双叉AB摆头,202211253458.9
2. 车铣复合电主轴,202222569986.7
3. 立式工作台卧式加工中心,202222346490.3
4. 复合材料胶接结构及方法,202211048728.2
5. 基于平行曲线的曲面匹配方法及系统,202210815133.9
6. 适用于搅拌摩擦焊机床的主轴焊接装置及搅拌摩擦焊机床,202020592364.4
7. 适用于火箭贮箱箱体的内支撑定位装置及火箭,202020592362.5
8. 适用于火箭贮箱箱底焊接的阻尼压紧装置,CN202020485242.5
9. 蒙皮上料支撑装置,201821722935.0
10. 柔性夹持定位装置,201821722948.8
11. 大型椭球面工件的搅拌摩擦焊拼接工装,201710979120.4
12. 大型椭球面端面铣削和搅拌摩擦焊接一体化的伺服工装,201710980352.1
13. 蒙皮加工的镜像铣削方法与系统,201710571555.5
14. 薄壁件镜像加工的多点阻尼支撑装置,201410682089.4
15. 具有变形跟踪和壁厚测量功能的镜像铣顶压装置,201410680590.7
16. 一种高效高精立式加工中心双回转工作台,201410649337.5
17. 一种搅拌摩擦焊接压力控制系统,201410369938.0
18. 旋转型外部伺服定位及装卡装置及其方法,201410315664.7
19. 一种用于大型筒段构件对接的内部柔性支撑装置,201420367313.6
20. 用于大型筒段构件对位的多点伺服调整装置及其方法,201410315740.4
21. 大型筒段构件的整体铆接装置及其方法,201210143811.8
22. 基于ACIS平台的五轴侧铣加工切削力预测方法,201210083188.1
23. 插铣刀具路径优化方法,201110304618.3
24. 实时生成曲率连续路径的数控插补系统, 201110111960.1
25. 五轴数控加工双NURBS刀具轨迹速度规划方法,201110111956.5
2023年,350vip8888新葡的京集团科研成果二等奖(排1)
2022年,上海市技术发明特等奖(排1)
2017年,国家“万人计划”科技创新领军人才
2016年,国家科学技术进步奖二等奖(排2)
2015年,国防科技进步一等奖(排3)
2014年,上海市领军人才
2007年,国防科学进步二等奖
2006年,“双回转工作台五轴联动数控机床”获2006年中国国际博览会创新奖;
2005年,“开放式数控平台及应用技术“获2005年上海市科技进步二等奖;